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On the elastic Schwarzschild scattering cross section 

P A  Collins, R Delbourgo and Ruth M Williams 
Physics Department, Imperial College of Science and Technology, London SW7 2B2, UK 

MS received 11 September 1972 

Abstract. We evaluate the differential cross section for scattering from a Schwarzschild 
source, the analogue of Rutherford scattering. The classical formula is compared with the 
Born approximation. 

1. Introduction 

The problem of a relativistic system characterized by a Schwarzschild metric has by 
now received exhaustive treatment (Darwin 1959, 1961, Zel’dovich and Novikov 1971) 
and the nature of the geodesics with their characteristic consequences are fairly well 
known. There is one aspect however, which, although qualitatively understood, has 
not to our knowledge been given any quantitative scrutiny, and this is the question ofthe 
differential scattering cross section from a Schwarzschild source, the direct analogue 
of Rutherford scattering. This paper is devoted to presenting the numerical results of 
such a computation. The main features which distinguish the Schwarzschild from the 
Rutherford problem are (i) the existence of a critical angular momentum below which 
capture occurs (absorption), (ii) multispiral scatterings which contribute to a given final 
scattering angle and divide the impact parameters into various ‘zones’, (iii) an infinite 
differential cross section in the backward direction which is, however, integrable and 
(iv) a profound difference between the classical cross section and the quantum mechanical 
Born approximation. 

In 9 2 we review the main properties of the geodesics (Synge 1960) and give implicitly 
the formula for the elastic differential cross section. In 9 3 we give asymptotic expressions 
in the limit of large and critical angular momentum. The numerical results which inter- 
polate between the two limits are presented in $ 4  and are compared with the Born 
approximation results. 

2. Geodesics and scattering 

The Schwarzschild solution of Einstein’s equations is described by the metric 

ds2 = 1- ( (1  -?)c2 dt2 

where m = GM/c2  and M is the mass of the scattering centre. Hereafter, we shall assume 
that r, 8, q5 are indeed the polar coordinates which describe the motion of a particle in 
the gravitational field and do not require redefinition by further transformation of 
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coordinates. If the motion of the test particle is taken to be in the 6 = 71/2 plane, then 
the timelike geodesic equation (Synge 1960) is 

u2 + 2a2mu + a2(P2 - 1) 2m(u - 

where U = l/r. The constants of motion a and P occurring above can be expressed in 
terms of the mass 1.1 of the scattered particle, its energy E and its angular momentum 1 
at asymptotic radial distances : 

It is sufficient for our purposes to consider the case when the roots u1 < u2 < u 3  are 
all real. We are interested in situations where the test particle is initially at an infinite 
distance from the centre, in which case two possibilities arise : (i) scattering of the particle, 
occurring when u1 d 0 < u2 < u 3 ;  (ii) capture of the particle, when u1  d 0 < u2 = u 3 .  
(Capture also takes place when u1  is negative and u2 and u 3  are complex conjugates 
with positive real part.) 

Integration of equation (2)  gives the trajectory equation 

u = u,+(u2-ul)sn2 [ ~ - $ # { 2 m ( u , - u ~ ) } ” ~ ]  (4) 

where we have chosen 4 = 0 to correspond to the perihelion (U = u 2 )  so that the constant 
of integration is 

dy{(l-y2)(1-k2y2)}-1’2 

with 

u2-u1 k2 = -. 
u3-‘1 

In fact 4K is the period of the elliptic function sn and k is its modulus. The total ‘angle 
of deviation’ x of the test particle (see figure 1) is 

x = 24(u = 0)-71 ( 6 )  

which is an implicit equation relying on the solution of equation (4). 
It is worthwhile to follow the trajectories as we decrease the angular momentum 

of the system (ie as the impact parameter is reduced) in order to understand the nature 
of the scattering and thereby to compute the cross section (see figure 1). For small a 
(large 1) there is very little deviation of the trajectory from a straight line and the peri- 
helion is far from the scattering centre (small u2).  As a is increased so is the deviation 
until a stage is reached when the particle is returned to its initial line of motion ; further 
increase of CI results in multispiral motion about the centre (one, two,. . . loops), until 
finally when a approaches the critical values C I ~  the particle is no longer able to escape 
to infinity but spirals into the centre. This is one of the features which makes numerical 
computations that much more difficult than in the Rutherford case. 

To arrive at  a formula for the differential scattering cross section we assume a steady 
state situation with a stream of parallel moving particles which are continuously moving 



Elastic Schwarzschild scattering cross section 163 
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Figure 1. Trajectories and cubics in the corresponding geodesic equations for various 
values of z. 

in from infinity, following trajectories determined by their respective impact parameters 

I 

P 
b - = a - ' ( p z -  1 ) -1 /2 ,  

and are scattered into the detecting apparatus. We note first of all that the measured 
scattering angle is Q = 131-2n711 where n is chosen so that 0 < 8 < 7c. The detectors 
collect particles which have undergone no loops, 1 loop, 2 loops,. . . -in this way the 
impact parameters can be divided into 'Fresnel-like zones'-and theoretically we shall 
have to sum over all these possibilities. If there were no spiralling we would obtain the 
conventional formula, 

This has now to be replaced by 

where a, connotes the range of c1 values which result in an n spiral scattering having 
8 = + ( ~ - 2 n x ) .  In this steady state approach the delays between particles arriving 
at the detectors having undergone different numbers of spirals are irrelevant. 

3. Asymptotic results 

We are able to obtain asymptotic expansions about two limits, CI = 0 and c1 = x c .  These 
serve to provide useful checks on numerical calculations (given in the next section) 
which interpolate between the two values. 
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By expressing ui in terms of a, we see that small a corresponds to small k of the elliptic 
function since 

Let us therefore expand both sides of our basic formula 

k2 = 4ma(P2 - 1)Ii2{ 1 - 2mct(P2 - 1)li2 + . . .}. 

u l (u l  - u J 1  = sn2[K -6(71+~){2m(u, - U,)} '"1 

(8) 

(4) 

in powers of k 2 .  This involves expansions for the roots u i  of the original cubic equation 
(2) 

The period of the elliptic function (Magnus et al 1966) can likewise be expanded, 

and inserted in the Jacobi elliptic function expansion 

s n t  = I+-+-+ k2  7k4 . . + )  s i n ( 2 j  +(E."+ ...j s i n ( g j  ( 16 256 16 32 

+( %+ k4 . .j sin( gj + . . . 

Substituting in equation (7) we obtain the small angle differential cross section, 

+ . . . .  

(9) 

We see that the leading behaviour agrees with the small angle Rutherford formula in the 
nonrelativistic limit 

2 T  
PC 

<< 1 p 2 - I = -  

(where T corresponds to the asymptotic kinetic energy) namely 

as 0 + 0. However, observe that discrepancies occur in next to leading order. 
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Near the other limit ct = ct, there is a near equality ofthe roots u2 and u 3 .  We therefore 
expand about the critical value 

p(9b2 - 8)3‘2 - 27p4 + 36p2 - 8 
32m2 

where 

1 - 2(1- 12m2a,2)”2 
6m U l c  = 

1 + (1 - 12m%,2)”2 
u2, = U J C  = 

6m 

and k2 = 1. Thus a suitable expansion parameter is 1 - k 2  in terms of which we may 
write (Magnus et a1 1966) 

(1-k2)’+ u2c-ulc  p2-1+2mu,, 
U1 = U l C + 4  p2 - 1 + 2mu2, 

U 2  = U 2 c - ~ U 2 c - U l c ) ( l - k 2 ) +  . . 
u3 = ~ , , + & ~ 2 ~ - ~ l ~ ) ( l - k ~ ) +  . . 

m(u2, - u ~ ~ ) ~ (  1 - k2)2  
CI = ct,- + . . .  

4ctc(p2 - 1 + 2mu2,) 

= -3 ln(1 - k 2 )  1 ++( 1 - - k 2 ) +  . . .} + 2  In 2+$(2 In 2-  1)(1 - k 2 ) +  . . . . (17) 

Also from the exact property of the Jacobi elliptic function, 

i sn( - ix, (1 - 
cn ( -  ix, (1 - k2)’”) sn(x,k) = 

we are able to use again expansions of elliptic functions of small moduli to deduce that 

sn(x, k) = tanh x + gtanh x - x sech2 x)( 1 - k 2 )  + . . . . (18) 

Equation (4) then reduces to 

1’2 
= tanh[2 In 2-3 In( 1 - k 2 ) - &  + z){2m(uzC - u ~ , ) } ” ~ ]  + O(1- k2) 

giving 
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from which we must subtract off the appropriate number of 2nn to relate to the scattering 
angle 8. Thus as a -+ SI, the term In(@, - a)  dominates and controls the number of spirals. 
It follows that 

and therefore the ratio of successive contributions to the sum in equation (7) is essentially 
given by 

4 exp[ - n{2m(uZ, - u1 ,)} l12]. 
an+ 1 

The relationship between the roots of the cubic, and the physical requirement ,!?’ 3 1 
mean that 2m(u,, - u~,)’~’ 2 and therefore the successive ‘partial’ differential cross 
sections decrease as exp( - 71/42) = 0.1. Therefore the sum over spirals converges 
rapidly for large n and one can write 

do {2NU2c-U1c)}1~2 
- = zero spiral cross section + 
dQ (8’ - 1) sin e 

L 
n =  1 

= zero spiral cross section 

+ -. 2{2m‘u2c-U1c)}”2 exp[-2n{2m(u2, - u,,)}’~’] cosh[{2m(~,,-t~,,))’~’8] + . . . . (21) (p2 - 1)a: sin e 

4. Intermediate results 

For general values of angular momentum lying between the two limiting cases considered 
above the differential cross section has to be evaluated numerically. In order to do this 
we adopt the integrated form of equation (4), 

du{2m(~ - u ~ ) ( u  - U J ( U  - U , ) }  - ‘ I 2 .  

Because the integrand has a singularity at the upper limit it is convenient to remove this 
by partial integration 

Now the integral can be evaluated by computer and in figure 2 we have plotted the 
differential cross section against momentum transfer t (as is more conventional in high 
energy physics), 

do 
dt p2c2(D2 - 1) a’ 

71 do _ -  - 
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Figure 2. Differential cross section for a particle of mass 1 GeV/c2 and momentum 10 GeV/c, 
with a scattering centre of mass 10- l 5  cm in gravitational units. 

In our calculation we have given the test particle a typical mass of 1 GeV/c2 and momen- 
tum 10 GeV/c; the mass of the scattering centre has been taken as cm in gravita- 
tional units. The only point of note is the appearance of an infinite cross section in 
the backward direction which is, however, integrable. The Rutherford cross section, 
given by equation (13), remains finite in this direction because db/dx vanishes there. 
In our calculation this does not occur since the scattering angle increases indefinitely 
as b decreases. The infinity in the forward direction is of course the normal one of 
Rutherford scattering and can be treated in the usual way. 

For Coulomb scattering it is a well known fact that in a quantum mechanical 
treatment the Born approximation reproduces exactly the Rutherford answer and 
that the higher order contributions do not affect the result apart from endowing the 
scattering amplitude with an overall phase. I t  is therefore of interest to determine the 
Born approximation in the Schwarzschild analogue and compare it with the classical 
cross section just determined. Now the Green function for a scalar test particle moving 
in a Schwarzschild metric, 

(a' + p 2 ) +  + d,{(gfi" - vfiv)ap+} = 0 

satisfies the equation 

A'(p) = ( p ' -  m')-' 1 + - d4x exp{i(p -p ' )  . x } p ~ p v ( g y y O - q f i v ) A ' ( p r ~ ) .  ( s;;: 
Thus the Born approximation to the scattering amplitude in the Schwarzschild 
geometry? reduces to 

T(p',p) = s d3x exp{ - i(p -p') . x} 

't Dr J Strathdee has evaluated a similar expression for the Born amplitude using isotropic coordinates and 
we are indebted to him for acquainting us with the method and results. 
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or 

i 2mk) + cos(2mk) si( - 2mk) )  

where k = momentum transfer, E = (conserved) energy of test particle. The corres- 
ponding cross section is depicted in figure 3 and we see that it differs considerably 

Figure 3. Differential cross section in the Born approximation for a particle of mass 1 GeV/c2 
and momentum 10 GeV/c, with a scattering centre of mass cm in gravitational units. 

from the classical Schwarzschild cross section. It would be rather optimistic although 
not inconceivable to expect that the exact Green function can reproduce the classical 
result. However, there are good reasons for doubting such simple minded generalizations 
to the quantum mechanical situation. In the first place in any realistic scattering 
process we should be considering the motion of a wave packet, specified by some 
typical dispersion and size, as it approaches the scattering centre ; thus we may imagine 
a plane-fronted wave of large enough dimensions and characterized by appropriate 
width approaching the potential singularity. In the Rutherford problem one discovers 
a recognizable outcoming quasiradial packet emerging after some time, as one can 
simply ascertain by following the trajectories of a cloud of classical particles which 
simulate the wave packet. On the other hand, in the Schwarzschild problem this is not 
what happens ; as a result of delays occasioned by multispiralling (due to the dispersion 
in the packet and the effects of near critical impact parameters) one would expect to 
get successions of progressively weaker outcoming radial waves, so much so that it is 
difficult to invisage how a viable radial wave packet can emerge and be interpreted as a 
particle. I t  may be that this phenomenon is connected with the apparent singular 
behaviour of the radial wavefunction at the Schwarzschild radius which suggests a 
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redefinition of the radius r and time t to other more appropriate coordinates (Eddington 
1924, Kruskal 1960). 
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